a2 United States Patent

Beeston et al.

US009058110B2

(10) Patent No.: US 9,058,110 B2

(54) MANAGING A CACHE IN A MULTI-NODE
VIRTUAL TAPE CONTROLLER

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Ralph T. Beeston, Tucson, AZ (US);
Erika M. Dawson, Tucson, AZ (US);
Duke A. Lee, Tucson, AZ (US); David
Luciani, Tucson, AZ (US); Joel K.
Lyman, Tucson, AZ (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/497,201

(22) Filed: Sep. 25, 2014

(65) Prior Publication Data
US 2015/0012700 A1l Jan. 8, 2015

Related U.S. Application Data

(63) Continuation of application No. 12/693,359, filed on
Jan. 25, 2010, now Pat. No. 8,856,450.

(51) Int.CL
GOGF 12/00 (2006.01)
GOGF 3/06 (2006.01)
GOGF 12/08 (2006.01)
(52) US.CL
CPC ... GOGF 3/0608 (2013.01); GOGF 12/084

(2013.01); GOGF 12/0866 (2013.01); GO6F
2212/213 (2013.01); GOGF 3/0665 (2013.01);
GOGF 3/0686 (2013.01); GOGF 12/0871
(2013.01); GO6F 2212/6042 (2013.01)

(45) Date of Patent: Jun. 16, 2015
(58) Field of Classification Search

CPCcc..... GOG6F 12/084; GO6F 12/0866; GOGF

2212/213

USPC ittt 711/111, 130

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,926,834 A 7/1999 Carlson et al.
6,189,080 Bl 2/2001 Ofer
6,636,909 B1 10/2003 Kahn et al.
6,745,212 B2 6/2004 Kishi et al.
6,779,058 B2 8/2004 Kishi et al.
7,085,895 B2 8/2006 Kishi

(Continued)
OTHER PUBLICATIONS

Notice of Allowance and Fee(s) Due from U.S. Appl. No. 12/693,359
dated Jun. 3, 2014.

(Continued)

Primary Examiner — Aracelis Ruiz
(74) Attorney, Agent, or Firm — Zilka-Kotab, PC

(57) ABSTRACT

According to one embodiment, a system includes a virtual
tape library having a cache, a virtual tape controller (VTC)
coupled to the virtual tape library, and an interface for cou-
pling multiple hosts to the VIC. The cache is shared by the
multiple hosts, and a common view of a cache state, a virtual
library state, and a number of write requests pending is pro-
vided to the hosts by the VTC. In another embodiment, a
method includes receiving data from at least one host using a
VTC, storing data received from all the hosts to a cache using
the VTC, sending an alert to all the hosts when free space is
low and entering into a warning state, sending another alert to
all the hosts when free space is critically low and entering into
a critical state while allowing previously mounted virtual
drives to continue normally.

20 Claims, 4 Drawing Sheets

US 9,058,110 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,194,562 B2 3/2007 Barnes et al.
7,243,188 B2 7/2007 Black
7,249,218 B2 7/2007 Gibble et al.
7,272,689 B2 9/2007 Anderson
7,590,803 B2 9/2009 Wintergerst
7,590,832 B2 9/2009 Taniuchi
8,856,450 B2 10/2014 Beeston et al.

2007/0067573 Al
2009/0043960 Al
2010/0199050 Al
2011/0185117 Al
2012/0239878 Al

OTHER PUBLICATIONS

3/2007 Bruening et al.
2/2009 Toshine
8/2010 LaFrese et al.
7/2011 Beeston et al.
9/2012 Beeston et al.

Final Office Action from U.S. Appl. No. 12/693,359 dated Mar. 17,
2014.

Non-Final Office Action from U.S. Appl. No. 12/693,359 dated Dec.
4,2013.

Non-Final Office Action from U.S. Appl. No. 12/693,359 dated Mar.
29, 2013.

Non-Final Office Action from U.S. Appl. No. 12/693,359 dated Sep.
14, 2012.

Non-Final Office Action from U.S. Appl. No. 13/483,827 dated Apr.
10, 2014.

Non-Final Office Action from U.S. Appl. No. 13/483,827 dated Oct.
3,2013.

U.S. Appl. No. 12/693,359, filed Jan. 25, 2010.

U.S. Appl. No. 13/483,827, filed May 30, 2012.

Kishi, G. T., “The IBM Virtual Tape Server: Making tape controllers
more autonomic,” IBM 2003, IBM J. Res. & Dev., vol. 47, No. 4, Jul.
2003, pp. 459-469.

Fisher et al., “IBM Virtualization Engine TS7700 Series Best Prac-
tices—Cache Management in the TS7720 V1.1,” IBM Technical
Document WP101382, Dec. 13, 2008.

Ly et al., “IBM System Storage TS7700 Virtualization Engine
TS7720 and TS7740 Release 1.5 Performance White Paper,” Apr. 6,
2009.

Fisher et al., “IBM Virtualization Engine TS7700 Series Best Prac-
tices: Understanding, Monitoring and Tuning the TS7700 Perfor-
mance Version 1.5,” IBM 2012, Aug. 2012, pp. 1-55.

Final Office Action from U.S. Appl. No. 13/483,827, dated Oct. 23,
2014.

Notice of Allowance from U.S. Appl. No. 13/483,827, dated Jan. 12,
2015.

U.S. Patent Jun. 16, 2015 Sheet 1 of 4 US 9,058,110 B2

100
\

120
Metwork 2

Network 3

Network 1

120

FIG. 1

U.S. Patent Jun. 16, 2015 Sheet 2 of 4 US 9,058,110 B2

220
NETWORK
2120 21? 215. 218 ‘\ -
e COMMUNICATION
CPU ROM RAM ADAPTER ADAPTER
212
2232 _] 236 ~ 238
= USER DISPLAY
INTERFACE Jrns
ADAPTER

232 228) %
228

FIG. 2

U.S. Patent Jun. 16, 2015 Sheet 3 of 4 US 9,058,110 B2

HOST HOST HOST
S01A 3018 ce SO1N

1
L———————‘{ NETWORK 302 |______J fsoo

I 304 Control Units Sharing the 34 !
: { Same Tape Library '
' FRIMARY CONTROL UNIT STANDBY CONTROL UNIT :
N 305N 2 326N |1
W Tape Tape Tapa Tape Tape | | Tape {4
i Daemon | | Daemon | """ | Daemon Daemon | [Daemon|™ " | Daemon |||
|[Fost Command Setwork gMiiast Command E
|| Manager 306 310 Manager 326 :
}
] . H 3 . : i ; - 2 I
: { Health Monitor 307 P | Heaith Monitor 327 | noeea | |
1| Library Manager 308| 309 | Library Manager 328| 329 !
L} I
! 7 y A '
NETWORK | 312 NETWORK | 330 _(*338
e i t
3] Virtual Tape Library (VTL) 7
VIRTUAL TAPE LIBRARY NODE A VIRTUAL TAPE LIBRARY NQDE B
: ~ 313N ~ K 332N
§31 3A §31 3B ¢ (332}\ §3328 ¢
Tape Tape Tape Tape Tape Tape
Drive Drive |"""| Drive Drive Drive """} Drive

Network

314A 214

e @ @
335
[Data De- Duphration Eagne 18

318 [Data De Dupiscat«m Engme

] b
i t
i t
i I
I I
I I
I I
} I
! L
!]
[} i
I b
I b
I I
i t
i |
i I
I I
I I
} I
} I
!]
! i
]]
I i
! NETWORK 320 |—l :
i]
i I
I I
I I
I I
} I
! i
! b
]]
I i
] t
i t
I I
i I
I I
I I
I I
} I
! i
!]
]]
I b

(z-) .
- -
03

Z

324 /’__1\\
N DASD

N

D ———
Meta Data Files 342
339A l;’{éQ l’ » 1 338N
Read/¥Vrite Buffars
e~
w
User Data Files 323

U.S. Patent Jun. 16, 2015 Sheet 4 of 4 US 9,058,110 B2

f400

[Receive data from at ieast one host using a virtual

402

tape controller

A 4

404
the cache using the virlual tape controlier

T

[Store the data received from the at ieast one host {o

Y

cache free space size is less than a first threshold 408

and enter into a warmning state using the virtual tape
controller

A 4

Send a second alert to the at least one host when a
cache free space size is less than a second
threshold and enter into a critical state using the
virtual tape controller

[Send a first alert to the at least one host when a
[408

s e

Y

410

Allow previously mounted virtual drives {o continue
normal writing activity when in the critical state

<

FIG. 4

US 9,058,110 B2

1
MANAGING A CACHE IN A MULTI-NODE
VIRTUAL TAPE CONTROLLER

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/693,359, now U.S. Pat. No. 8,856,450, filed
on Jan. 25, 2010, which is herein incorporated by reference.

BACKGROUND

A virtual tape controller (VTC) is typically a tape manage-
ment system (such as a special storage device, group of
devices, etc.) and software, firmware, etc., which manages
data such that the data appears to be stored entirely on data
storage cartridges when the data is actually located in faster to
operate devices, such as hard disk drives, flash memory, etc.
The faster device, in most cases a hard disk storage device,
may be called a tape volume cache (TVC).

As with any storage device, there is a limited storage capac-
ity on each VTC. When the cache is full, attempts to store
more data fail. When applied to a virtual tape system (VTS),
the host can no longer write data to virtual volumes presented
to the VTC. Host write jobs will suddenly desist. There are
situations currently where users expecting data to be written
to VIS’s are extremely upset because their business continu-
ity is affected by the condition preempting the data from
being written.

There are currently several implementations of cache man-
agement features in VIS’s. The process in these products is
generally to monitor the cache usage for one or more thresh-
old values (such as a “limited cache” state, and an “out of
cache” state), and if the cache reaches a threshold value, the
VTC can take reactive precautions. For example, in some
systems, when the “limited cache” state is reached (warning
state), a library state change message is sent to the host to
indicate the condition. Host jobs are allowed to continue
writing data to the cache. The system does not attempt to slow
down the host write jobs in any manner. As soon as the cache
usage reaches the “out of cache” state (critical state), another
attention message is sent to the attached host. When the
critical state is reached, the system fails current write jobs and
blocks future writes to the cache. This affects writing infor-
mation to the cache, and reading information from the cache
by the host is not affected.

The “out of cache” state is closely monitored by the system
in this example. This state is persistent until the cache usage
falls below a threshold, at which time the VTS notifies the
host that the “out of cache” and “limited cache” states have
been disabled. Host write jobs then resume normally.

In another example, a virtual tape controller that faces the
same challenges in managing a limited sized cache is pre-
sented. The VTC could potentially use the same fixed thresh-
old values as the previous example, but there are distinct
organizational differences that warrant a different method.
Perhaps the biggest difference between the present VI'C and
the previous example is the range of supported cache sizes.
The present VTC supports much larger cache sizes. Host jobs
cannot write to the system’s cache when the space used is at
or above a threshold of the available cache size, leaving more
unused space when the cache size is very large. When this
same method is applied to the present system, a large amount
ofunused space is left, which is essentially wasted space, and
is a concern for VTS’s with large or very large cache sizes,
such as on the order of 40-100 TB.

Moreover, another difference between the two systems is
the size of a logical volume. The maximum logical volume

10

15

20

25

30

35

40

45

50

55

60

65

2

size in the previous example is about 25 times smaller than the
size of a logical volume in the presently described system.
The bigger logical volume size means the host may write
more datato the cache on a per device basis, reducing the time
associated with demounting the existing volume and loading
a new one to the drive. Since the present system may have
many devices performing writes simultaneously, on the order
of'up to 256 devices, all 256 jobs may desist at the same time
when the “out of cache” threshold is reached. Since the tran-
sition from the “limited cache” state to the “out of cache” state
may be reached rather quickly when this large amount of data
is being written, a sudden failure to all write jobs may be
triggered. This leads to another limitation in the use of the
current method for cache management, that sudden failure for
all write jobs may be realized since there is no control over
how many jobs can write or how quickly the information is
written (also known as write throttling) to the logical volumes
when warning states are reached, e.g., the lack of host write
throttling.

Therefore, a cache management scheme or system which
can overcome the problems encountered with currently used
devices would be very beneficial to producing continuity for
writing to VIS’s.

SUMMARY

According to one embodiment, a system includes a virtual
tape library having a cache, at least one virtual tape controller
coupled to the virtual tape library, and an interface for cou-
pling at least two hosts to the at least one virtual tape control-
ler. The cache is shared by the at least two hosts, and a
common view of a cache state, a virtual library state, and a
number of write requests pending is provided to the at least
two hosts by the virtual tape controller.

In another embodiment, a method for managing cache
space in a virtual tape controller includes receiving data from
at least one host using the virtual tape controller, storing data
received from the at least one host to the cache using the
virtual tape controller, sending a first alert to at least one host
when a cache free space size is less than a first threshold and
entering into a warning state using the virtual tape controller,
sending a second alert to the at least one host when the cache
free space size is less than a second threshold and entering
into a critical state using the virtual tape controller, and allow-
ing previously mounted virtual drives to continue normal
writing activity when in the critical state. At least one scratch
volume is deleted when in the critical state, the scratch vol-
ume being chosen based on at least one of: a length of time the
scratch volume has been designated scratch, a priority level of
the information stored on the scratch volume, and a scratch
delay value associated with the scratch volume.

A computer program product for managing cache space, in
one embodiment, includes a computer readable storage
medium having computer readable program code embodied
therewith. The computer readable program code is configured
to send a first alert to at least one host when a cache free space
size is less than a first threshold and entering into a warning
state; send a second alert to the at least one host when the
cache free space size is less than a second threshold and
entering into a critical state; and delete at least one scratch
volume when in the critical state, the scratch volume chosen
based on at least one of: a length of time the scratch volume
has been designated scratch, a priority level of the informa-
tion stored on the scratch volume, and a scratch delay value
associated with the scratch volume.

Other aspects and embodiments of the present invention
will become apparent from the following detailed descrip-

US 9,058,110 B2

3

tion, which, when taken in conjunction with the drawings,
illustrate by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a network architecture, in accordance
with one embodiment.

FIG. 2 shows a representative hardware environment that
may be associated with the servers and/or clients of FIG. 1, in
accordance with one embodiment.

FIG. 3 depicts a detailed block diagram of a tape network,
according to one embodiment.

FIG. 41is aflow chart of a method for managing cache space
in a virtual tape controller, according to one embodiment.

DETAILED DESCRIPTION

The following description is made for the purpose of illus-
trating the general principles of the present invention and is
not meant to limit the inventive concepts claimed herein.
Further, particular features described herein can be used in
combination with other described features in each of the
various possible combinations and permutations.

Unless otherwise specifically defined herein, all terms are
to be given their broadest possible interpretation including
meanings implied from the specification as well as meanings
understood by those skilled in the art and/or as defined in
dictionaries, treatises, etc.

It must also be noted that, as used in the specification and
the appended claims, the singular forms “a,” “an” and “the”
include plural referents unless otherwise specified. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

In one general embodiment, a system includes a virtual
tape library having a cache, at least one virtual tape controller
coupled to the virtual tape library, and an interface for cou-
pling at least one host to the at least one virtual tape controller.
The cache is shared by the at least one host, and a common
view of a cache state, a virtual library state, and a number of
write requests pending is provided to the at least one host by
the virtual tape controller.

In another general embodiment, a method for managing
cache space in a virtual tape controller includes receiving data
from at least one host using the virtual tape controller, storing
data received from the at least one host to the cache using the
virtual tape controller, sending a first alert to at least one host
when a cache free space size is less than a first threshold and
entering into a warning state using the virtual tape controller,
sending a second alert to the at least one host when the cache
free space size is less than a second threshold and entering
into a critical state using the virtual tape controller, and allow-
ing previously mounted virtual drives to continue normal
writing activity when in the critical state.

In another general embodiment, a computer program prod-
uct for managing cache space includes a computer readable
storage medium having computer readable program code
embodied therewith. The computer readable program code is
configured to send a first alert to at least one host when a cache
free space size is less than a first threshold and entering into a
warning state; send a second alert to the at least one host when
the cache free space size is less than a second threshold and
entering into a critical state; and throttle write requests
received from the at least one host when in the critical state by

10

15

20

25

30

35

40

45

50

55

60

65

4

progressively reducing a rate at which data received in the
write requests is written to one or more virtual drives such that
no write requests are failed while in the critical state.

In another general embodiment, a system includes a virtual
tape library having a cache, at least one virtual tape controller
coupled to the virtual tape library, and an interface for cou-
pling at least two hosts to the at least one virtual tape control-
ler. The cache is shared by the at least two hosts, and the at
least one virtual tape controller enters into a warning state and
provides a first alert to the at least one host when a cache free
space size is less than a first threshold, the at least one virtual
tape controller enters into a critical state and provides a sec-
ond alert to the at least one host when a cache free space size
is less than a second threshold, and the at least one virtual tape
controller throttles write requests received from the at least
two hosts when in the critical state by progressively reducing
a rate at which data received in the write requests is stored to
one or more virtual drives in the virtual library such that no
write requests are failed while in the critical state.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

US 9,058,110 B2

5

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified

25

35

40

45

55

6

functions or acts, or combinations of special purpose hard-
ware and computer instructions.

FIG. 1 illustrates a network architecture 100, in accordance
with one embodiment. As shown in FIG. 1, a plurality of
remote networks 102 are provided including a first remote
network 104 and a second remote network 106. A gateway
101 may be coupled between the remote networks 102 and a
proximate network 108. In the context of the present network
architecture 100, the networks 104, 106 may each take any
form including, but not limited to a LAN, a WAN such as the
Internet, PSTN, internal telephone network, etc.

Inuse, the gateway 101 serves as an entrance point from the
remote networks 102 to the proximate network 108. As such,
the gateway 101 may function as a router, which is capable of
directing a given packet of data that arrives at the gateway
101, and a switch, which furnishes the actual path in and out
of the gateway 101 for a given packet.

Further included is at least one data server 114 coupled to
the proximate network 108, and which is accessible from the
remote networks 102 via the gateway 101. It should be noted
that the data server(s) 114 may include any type of computing
device/groupware. Coupled to each data server 114 is a plu-
rality of user devices 116. Such user devices 116 may include
a desktop computer, lap-top computer, hand-held computer,
printer or any other type of logic. It should be noted that a user
device 111 may also be directly coupled to any of the net-
works, in one embodiment.

A peripheral 120 or series of peripherals 120, e.g., fac-
simile machines, printers, networked and/or local storage
units or systems, etc., may be coupled to one or more of the
networks 104, 106, 108. It should be noted that databases
and/or additional components may be utilized with, or inte-
grated into, any type of network element coupled to the net-
works 104,106, 108. In the context of the present description,
anetwork element may refer to any component of a network.

FIG. 2 shows a representative hardware environment asso-
ciated with a user device 116 and/or server 114 of FIG. 1, in
accordance with one embodiment. Referring again to FIG. 2,
a typical hardware configuration of a workstation having a
central processing unit 210, such as a microprocessor, and a
number of other units interconnected via a system bus 212 is
illustrated according to one embodiment.

The workstation shown in FIG. 2 includes a Random
Access Memory (RAM) 214, Read Only Memory (ROM)
216, an /O adapter 218 for connecting peripheral devices
such as disk storage units 220 to the bus 212, a user interface
adapter 222 for connecting a keyboard 224, a mouse 226, a
speaker 228, a microphone 232, and/or other user interface
devices such as a touch screen and a digital camera (not
shown) to the bus 212, communication adapter 234 for con-
necting the workstation to a communication network 235
(e.g., adata processing network) and a display adapter 236 for
connecting the bus 212 to a display device 238.

The workstation may have resident thereon an operating
system such as the Microsoft Windows® Operating System
(0S),aMAC OS, a UNIX OS, etc. It will be appreciated that
a preferred embodiment may also be implemented on plat-
forms and operating systems other than those mentioned. A
preferred embodiment may be written using JAVA, XML, C,
and/or C++ language, or other programming languages,
along with an object oriented programming methodology.
Object oriented programming (OOP), which has become
increasingly used to develop complex applications, may be
used.

When a virtual tape controller (VTC) writes information to
one or more logical volumes of a virtual tape system (VTS),
the information is written to a cache. When the cache is

US 9,058,110 B2

7

becoming full, conventional methods of cache management
do notattempt to slow down the write operations issued by the
host. This slowing down of write operations may be referred
to as host write throttling. The slowing down of each write
operation may prevent the host job from failing when the
cache reaches a critical threshold (e.g., “out of cache” state)
by allowing the host to cleanup unneeded data from cache,
freeing up space for the write jobs that are in progress.

The process of cleaning up unneeded data is known as
scratch processing. In some approaches, there is a user inter-
face web page that allows a customer or some other user to
setup a fast ready category and a time period in which vol-
umes in a category may have its data expired (expire time).
The fast ready category with an expire time set becomes a
scratch category, one in which the system will get rid of the
data on the volume when the specified expire time is reached.
For example, a minimum expire time may be 24 hours in
some approaches. When the data expires on a volume, the
system scratches the volume by deleting the volume from the
cache.

When running out of cache, the scratch processing in the
system remains unaffected. In other words, the system honors
the expire time set up for a fast ready category. For example,
if category 1234 is a fast ready category with an expire time of
24 hours, and the host moves volume Z00001 to category
1234, the volume’s data may be deleted in 24 hours, since this
is the expire time. If the system enters the “limited cache”
state, even though cache is running out of free space, the
system will not automatically delete the volume Z00001 until
24 hours later. If the host tries to free up cache space, an
explicit eject of Z00001 would have to be issued. When the
system gets the eject command, the volume Z00001 is deleted
immediately. As noted above, when the cache management
method of the current systems is applied to a system having
much larger cache and volume sizes, there are limitations.
Improvements can be made to more effectively manage the
cache when free space is running out so that host write jobs do
not fail, as are discussed in more detail below.

DEFINITIONS

VTL—Virtual Tape Library

VTC—Virtual Tape Controller

VTS—Virtual Tape System

Remaining_free_space—This is the amount of remaining
cache space reported by the VTL.

Num_write_jobs—This is the number of currently
mounted drives that either: were mounted with the Scratch
Volume indicator, or are currently in write mode.

Scratch_delay—This is the number of days to delay before
deleting the data from a volume that has been marked as
scratch by the host.

Scratch_decay—This is the value to indicate if the VTS
should immediately delete the data from scratch volumes
(ignore the scratch_delay value) when the cache is in the out
of cache state.

Write_delay—This is the number of seconds added to each
write command while throttling write operations.

PB—One petabyte or 1,000,000,000,000,000 bytes.

TB—One terabyte or 1,000,000,000,000 bytes.

GB—One gigabyte or 1,000,000,000 bytes.

MB—One megabyte or 1,000,000 bytes.

EMBODIMENTS

According to some embodiments, a host application may
specify which volume should be scratched in a perform
library function (PLF) command and the VTC sets the scratch
flag and timestamp for the volume in the database. In addi-
tion, a customer or some other user may specify how many

20

30

40

45

50

60

8

days to delay before deleting the data after the scratch flag has
been enabled. This is referred to as a scratch delay value.

Also, in some approaches, a customer or some other user
may specify whether the VTC should automatically delete
data from scratch volumes if the “out of cache” state has been
entered. This is known as the scratch decay setting. When the
scratch timestamp expires, the VTC may issue a command to
the VTL to delete the data from the volume. The VTL cache
statistics may be monitored through a product specific log
page returned by the VTL. The information reported by the
VTL may include a remaining free space, a used space, and/or
a total space, among other items possibly returned by the
VTL. The cache monitoring polling frequency may change
depending on the amount of free space reported by the VTL.

In addition, in some embodiments, entry of the “out of
cache” state is dependent on the remaining free space and the
number of host write jobs in progress, in queue, etc. When the
“out of cache” state has been entered and the scratch decay
value is set, the VTC will automatically delete the volumes
(possibly at a rate of about 10,000 per hour) starting with the
oldest scratch timestamps first, and moving chronologically.
The write throttling factor, or how long a write operation is
delayed by the VIC, may be dependent on the amount of free
space reported by the VTL and the number of host write jobs
in progress at the present time.

Furthermore, in some approaches, when the VIC is out of
cache, scratch mounts are failed, and the system goes into
write protect mode where all write requests from the host are
failed. However, read operations are allowed.

According to some preferred embodiments, the VIC may
have multiple nodes that share the same cache (a cluster). All
nodes in the cluster may perform host /O simultaneously.
The VTC allows all nodes to have a common view of the
cache state, library state (in particular the “limited cache” and
“out of cache” states), and number of write jobs. This allows
a common write throttling factor and scratch mount response
for all nodes in the cluster.

According to some embodiments, since the VIC is con-
necting to a VTL with a limited sized cache, the need exists to
make every effort to prevent write jobs from failing, due to a
cache full condition being reached, resulting in an interrup-
tion in information flow. To assist with this effort, the existing
VTC library states, “Limited Cache” Free Space and “Out of
Cache” Resources, may be used. These states may be saved in
the database for reporting to the host.

Limited Cache Free Space

The “Limited Cache” Free Space state warns any attached
host systems that the VTC is running low on cache space and
that the host(s) should consider taking steps to free up unnec-
essary data, according to one embodiment. Of course, this
threshold may be called by a different name, but in operation,
the threshold is met when the cache free space drops to a
certain level above that of the “Out of Cache” Resources state.
According to some approaches, while in the “Limited Cache”
Free Space state, mounts may be serialized so that the VTC
knows exactly when to enter the “Out of Cache” Resources
state. However, all other library activity continues as normal.

“Out of Cache” Resources

This state indicates that the VTL is running critically low
on cache space, according to one embodiment. Of course, this
threshold may be called by a different name, but in operation,
the threshold is met when the cache free space drops to a
certain level below that of the “Limited Cache” Free Space
state. According to some embodiments, in this state, all new
scratch mounts (as indicated by the Scratch Volume indicator
in the mount command) are failed with a completion code and
areason code (Insufficient Cache Space). Mounts that do not
indicate a Scratch Volume will still be accepted, but any write
commands issued to these volumes will be failed indicating
the volume is write-protected. Contrarily, all cartridges that

US 9,058,110 B2

9

were mounted before entering this state will continue to write
successfully. However, while in this state, writes will get
slower and slower as free cache space is depleted. Addition-
ally, when this state is entered, unexpired scratch volumes
may be deleted immediately (starting with the oldest scratch
timestamps) if the “scratch_decay” indicator is set (this is set
through SMIT and saved in the database). Scratch data may
continue to expire early until there is enough cache space to
leave the “Out of Cache” Resources state.

Scratch Processing

Scratch Processing is described herein according to one
embodiment. If the Order Flags from the host(s) mount com-
mand indicate that this is a “Scratch Volume”, a “scratch”
attribute for the volume may be set in the database. In addi-
tion, a calculated delete expired timestamp may also be set for
that volume based on the scratch_delay value set, possibly
through use of a menu hosted by the VTC. The VTC may also
periodically check to see if any cartridges have exceeded the
waiting period, at which point the data needs to be deleted.
This periodic checking may be done by a new thread which
wakes up periodically (such as every hour, every 30 minutes,
if it receives a semaphore, etc.) and gets a list of volumes that
have a scratch timestamp, and deletes the ones that have
expired. Once the data has been deleted, the scratch times-
tamp may be cleared. When a cartridge is mounted, the
scratch attribute may be cleared before a mount complete
status is sent to the host(s). This prevents any timing issues
that may happen between a process that is writing the car-
tridge and a process that is deleting scratch data.

An exemplary timeline is provided below for clarification
of events that occur as free space in the cache is nearly
depleted:

1. Remaining_free_space>(“Limited Cache” Free Space

state threshold, such as 3.5 TB)
Remaining_free_space is monitored periodically (such
as every 10 seconds) during health check polling

2. Remaining_free_space<(“Limited Cache” Free Space
state threshold, such as 3.5 TB)

Enter the “Limited Cache” Free Space state
Remaining_free_space is monitored periodically (such
as every 10 seconds)

3. Remaining_free_space<((num_writejobs+1)*(write
job_size_estimate, such as 10 GB) OR Remaining_
free_space<(“Out of Cache” Resources state threshold,
such as 500 GB)

Enter the “Out of Cache” Resources state

New scratch mounts are failed

New private mounts reject any write commands

All previously mounted drives are allowed to continue
write activity normally

Remaining_free_space is monitored periodically (such
as every second)

4. Remaining_free_space<((num_writejobs)*(min_
write_ job_size_estimate, such as 1 GB))

Start throttling writes

write_delay=0.01*(((min_write_job_size_estimate,
such as 1 GB)*num_write_jobs)-remaining_
free_space)/1 MB

5. Remaining_free_space>((num_write_jobs)*(min_
write_job_size_estimate, such as 1 GB))

Stop throttling writes

6. Remaining_free_space>((num_write_jobs+25)*(write
job_size_estimate, such as 10 GB))
Turn off “Out of Cache” Resources state

7. Remaining_free_space>(“Limited Cache” Free Space
state threshold, such as 3.5 TB)

Turn off Limited Cache Free Space state.

Free Space Monitoring

The monitoring of free space may be done at different
intervals depending on what state the library is in, according

5

10

15

20

25

30

35

40

45

50

55

60

65

10

to one embodiment. When the VIC is not in either “Limited
Cache” Free Space or “Out of Cache” Resources state, a
monitoring interval of 10 seconds may be used, according to
some approaches. Other intervals include every 5 seconds,
every 15 seconds, every 2 seconds, every minute, etc. While
in the “Limited Cache” Free Space state, the VTC may moni-
tor free space every 10 seconds. While in the “Out of Cache”
Resources state, the VI'C may monitor free space more fre-
quently, such as every 1 second, every 2 seconds, etc. When
the “Out of Cache” Resources state is entered, the cache
monitoring function may notify the scratch monitoring thread
that it can start expiring scratch data if the “scratch_decay”
indicator is set. The cache space statistics (free and used) are
gathered by polling the VTL to return the information, which
may be returned in a SCSI log page or some other format. This
message may be a product specific command which changes
depending on the VTL and/or VTC being used.

Additionally, when the “Out of Cache” Resources state is
entered, the cache monitoring function may set an indicator in
a shared memory segment. This indicator notifies the Tape
Daemon to reject write commands for new mounts. The Tape
Daemon may also set an indicator for the VTC to inhibit
buffered writes on new mounts so that all write commands go
to the Tape Daemon before they are accepted.

When writes are to start being throttled, the cache moni-
toring function may set a throttling value in shared memory,
and the Tape Daemon may use that value as a delay on every
write command. This gives the user enough time to cancel any
unnecessary jobs, and scratch any unnecessary volumes
before they run out of cache space.

Number of “Write” Jobs

After entering the “Limited Cache” Free Space state, any
further actions are based on the number of write jobs in
progress, according to one embodiment. This is a combina-
tion of the number of volumes that were mounted for scratch,
and the number of private mounts that are currently in write
mode. A private mount is one in which a host issues a mount
from a private category, which usually means there is data on
the volume (e.g., the host may read or append to the volume
after a mount completion). A scratch mount is one in which
the host indicates to the VTC that there is no active data on the
volume and that the host has the intention of writing data to
the volume after a mount completion.

To get the number of volumes mounted for scratch, accord-
ing to one embodiment, if the Mount command has the
Scratch Volume indicator, a drive attribute may be set in the
database. To get the number of drives that are in write mode,
according to one embodiment, the DEV_WRITE_MODE
indicator may be set for device_flags2 in the shared memory
segment, and the cache monitoring function may set associ-
ated drive attributes in the database before doing its calcula-
tion.

Library Monitoring Thread

The Library Monitoring Thread may be used to put free
space into shared memory, according to one embodiment.
Also, it may get log page(s) from the library, get free space,
set “Limited Cache” Free Space state when the cache free
space is less than a threshold (such as 3 TB), reset the “Lim-
ited Cache” Free Space state when the cache free space is
greater than a threshold (such as 3.5 TB), and set/reset the
“Out of Cache” Resources state based on a variable, such as
lie_OutOfCache(). In addition, in some approaches, the
Library Monitoring Thread may send the operational state
change message to the host(s) when each state is set/reset, and
set out_of_cache in the shared memory when “Out of Cache”
Resources state is entered.

US 9,058,110 B2

11

Cache Monitoring Thread

According to some embodiments, the Cache Monitoring
Thread may wake up periodically (such as every second) and
check for the “Out of Cache” Resources state. Also, when in
the “Out of Cache” Resources state, it may call lie_irm-
mCacheStats, and if there is a scratch_decay, it may wake up
the Scratch Monitoring Thread. In addition, in some
approaches, the Cache Monitoring Thread may call lie_irm-
mNumWriteJobs(), and set throttle_factor periodically (such
as each second) in the shared memory.

Tape Daemon

The Tape Daemon, according to some embodiments, may
look at throttle_factor on each write, and may look at out_of_
cache on each mount to set Write Protect.

Mounts

On each scratch mount, a good initial status may be sent
while the operational state is looked at for the “Out of Cache”
Resources state. If this state is found, a completion code
indicating that the mount failed and a reason code indicating
it failed because the “Out of Cache” Resources state was
encountered may be sent.

Now referring to FIG. 3, according to one embodiment, a
detailed block diagram of a tape network is shown including
a tape subsystem comprising two control units and a tape
library. In FIG. 3, a block diagram of a tape management
system is also shown. The approaches and embodiments
described herein may be implemented in the context of func-
tionality of the tape storage system 300, or in any desired
environment. According, the embodiments and approaches
described herein are not limited to the structure shown in FIG.
3. Tape storage system 300 includes a control unit cluster 303
and a virtual tape library 338. The control unit cluster 303
may have a primary control unit 304 and a standby control
unit 324. The virtual tape library (VTL) 338 has a virtual tape
library node A 311, a virtual tape library node B 331, and a
DASD cache 321. One or more host system(s) (301A,
301B, .. .301N) is linked to the control unit cluster 303 via a
network connection, e.g., TCP/IP, LAN, Ethernet. WLAN,
the IBM® Enterprise System Connection (ESCON) (not
shown), etc.

In one embodiment, host system(s) 301A, 301B, . .. 301N
may be computer systems, such as personal computers, work-
stations, mainframes, etc., that are linked to the control units
304 and 324 via one or more ESCON channels. In other
embodiments, TCP/IP connections or Ethernet connections
may be used. Control units 304 and 324, in one embodiment,
are computer systems including one or more processors, such
as personal computers, workstations, mainframes, etc. Con-
trol unit 304 is linked to virtual tape library node A 311 via a
network connection 312, e.g., TCP/IP, LAN, Ethernet, fibre
channel, etc. Control unit 324 is linked to virtual tape library
node B 331 via a network connection 330, e.g., TCP/IP, LAN,
Ethernet, fibre channel, etc. Control units 304 and 324 may
have a common view of the VTL 338. The VTL 338 is linked
to the DASD cache 321 via a network connection 320, e.g.,
TCP/IP, LAN, Ethernet, fibre channel, etc. The DASD cache
321 may preferably include one or more logical volumes
stored as (user) data files 323. The DASD cache 321 also
includes meta data files 322 used by the VL 338 to manage
the user data 323. In one embodiment, the DASD cache 321
may include a plurality of hard disks that are spaced into a
redundant array of inexpensive disk (RAID) arrays.

VTL 338 may include a plurality of tape drives, generally
designated tape drives 313A, 313B, . . . 313N and 332A,
332B, . .. 332N, such as International Business Machines
(IBM®) TS 1100, Jaguar 3592 tape drives, or any other tape
drive known in the art, including virtual tape drives, accord-

5

10

15

20

25

30

35

40

45

50

55

60

65

12

ing to some embodiments. Generally, a removable storage
volume, e.g., a virtual data storage cartridge 317A, 3178, . ..
317N and 336A, 3368, . . . 336N, is loaded into each of the
tape drives. Tape drives 313A, 313B, . .. 313N in virtual tape
library node A 311 are serviced by an accessor 316, such as a
virtual accessor when using virtual tape drives, which simu-
lates the action of transferring selected virtual data storage
cartridges 317A, 317B, . . . 317N between tape drives 313A,
313B, . . . 313N and their corresponding virtual storage
shelves 314A, 314B, . . . 314N within a data storage cartridge
repository. Tape drives 332A, 332B, . . . 332N in virtual tape
library node B 331 are serviced by a virtual accessor 335
which simulates the action of transferring selected virtual
data storage cartridges 336A, 336B, . . . 336N between tape
drives 332A, 332B, ... 332N and their corresponding virtual
storage shelves 333A, 333B, . . . 333N within a data storage
cartridge repository.

It is noted that the variable identifier “N” is used in several
instances in FIG. 3 to more simply designate the final element
(e.g., tape drives, 313A, 313B . . . 313N, and data storage
cartridges, 317A, 317B, . . . 317N) of a series of related or
similar elements (e.g., tape drives and data storage car-
tridges). The repeated use of such variable identifiers is not
meant to imply a correlation between the sizes of such series
of elements, although such correlation may exist. The use of
such variable identifiers does not require that the series of
elements has the same number of elements as another series
delimited by the same variable identifier. Rather, in each
instance of use, the variable identified by “N”” may hold the
same or a different value than other instances of the same
variable identifier.

Each node of the VTL 338 may also include a data de-
duplication engine. For example, virtual tape library node A
311 contains data de-duplication engine 318 and virtual tape
library node B 331 contains data de-duplication engine 337,
in the embodiment shown in FIG. 3. The data de-duplication
engine functions to compress the user data 323 before storing
to the DASD cache 321. The data de-duplication engines 318
and 337 also store meta data files 322 on the DASD cache 321
to allow the VTL 338 to construct the original user data fora
particular logical volume.

Virtual tape data storage system 300 includes a cluster of
two control units 304 and 324 that share the same VTL 338.
Although not shown, there can be any number of control units
in the cluster, up to a last number N as previously described.
All control units may have access to the same library
resources, and thus, may coordinate the usage of resources
such as tape drives and cartridges. One control unit in the
cluster acts as a primary control unit and another may be
designated the standby control unit. The primary control unit
304 includes an active database 309, a host command man-
ager 306, a health monitor 307, and an active library manager
308. Similarly, standby control unit 324 includes an active
database 329, a host command manager 326, a health monitor
327, and an active library manager 328. All control units in the
cluster that require database access direct their requests to the
primary control unit 304. Furthermore, all control units that
require a library function to be performed also direct these
requests to the primary control unit 304. For example, if
control unit 324 wants to mount a cartridge 336A, 336B, . . .
336N to a tape drive 332A, 332B, . . . 332N, the request is
forwarded to the library manager 308 of the primary control
unit 304. After the cartridge 336 is mounted, control unit 324
may now perform tape input/output (I/O) requests by the
host(s) 301. Also, should the primary control unit 304 fail for
some reason, the standby control unit 324 may assume the
duties as the primary control unit.

US 9,058,110 B2

13

According to some embodiments, a system includes a vir-
tual tape library having a cache, at least one virtual tape
controller coupled to the virtual tape library, and an interface
for coupling at least one host to the at least one virtual tape
controller. The system may be similar to the virtual tape data
storage system 300 as shown in FIG. 3, but is not so limited.
The cache is shared by the at least one host, and a common
view of a cache state, a virtual library state, and a number of
write requests pending is provided to the at least one host by
the virtual tape controller. In this manner, each host views the
same real time status of the library and cache, thereby elimi-
nating crosstalk issues and other problems seen in conven-
tional systems.

In some approaches, the interface may configured to
couple at least two hosts, such as two hosts, three hosts, ten
hosts, etc., and the cache is shared by all of the hosts. Once
again, in this manner, each host views the same real time
status of the library and cache, thereby eliminating crosstalk
issues and other problems seen in conventional systems.

In one embodiment, the at least one virtual tape controller
may enter into a warning state and may provide a first alert to
the hosts when a cache free space size is less than a first
threshold. Also, the at least one virtual tape controller may
enter into a critical state and may provide a second alert to the
hosts when a cache free space size is less than a second
threshold. The first threshold and the second threshold may be
set by a user, automatically set by the VTC, set based on a
percentage of a cache size, be based on an amount of used
space, etc. Also, the first and second thresholds may be
dynamic, such that the threshold value changes depending on
some factor(s), such as remaining cache size, number of
pending write requests, amount of processor usage, etc.

According to some approaches, the at least one virtual tape
controller may allow previously mounted virtual drives to
continue normal writing activity when in the critical state.
This allows for normal operation on private mounts even
when cache free space is extremely limited.

In more approaches, the at least one virtual tape controller
may throttle write requests received from the at least one host
when in the critical state by progressively reducing a rate at
which data received in the write requests is stored to one or
more virtual drives in the virtual library such that no write
requests are failed while in the critical state. This allows for
the VTC to recover from a situation where a conventional
system would fail all write requests. Instead of failing write
requests from the hosts, this system may throttle down the
writing rate based on one or more factors, such as the number
of write requests pending and the cache free space. In addi-
tion, the system may delete one or more scratch mounts either
in response to a user action, or automatically based on some
predetermined factors, such as length of time designated
scratch, priority level of the information stored, etc. In a
further embodiment, the at least one virtual tape controller
may calculate a write delay value associated with each write
request received from the at least one host, the write delay
value equaling 0.01*((1 GB*N)-FS)/(1 MB) where N is a
number of write requests pending and FS is the cache free
space. This write delay value may be used to determine how
long to wait before performing the write request.

Now referring to FIG. 4, a method 400 for managing cache
space in a virtual tape controller is described, according to
one embodiment. The method 400 may be carried out in any
desired environment, including that shown in FIG. 3, and may
include more steps not shown in FIG. 4.

In operation 402, data is received from at least one host
using the virtual tape controller.

20

30

40

45

55

60

65

14

In operation 404, the data received from the at least one
host is stored to a cache using the virtual tape controller.

In operation 406, a first alert is sent to the at least one host
when a cache free space size is less than a first threshold and
awarning state is entered into using the virtual tape controller.

In operation 408, a second alert is sent to the at least one
host when the cache free space size is less than a second
threshold and a critical state is entered into using the virtual
tape controller.

In operation 410, previously mounted virtual drives are
allowed to continue normal writing activity when in the criti-
cal state.

According to some approaches, the method 400 may fur-
ther include monitoring the cache free space size at least once
every ten seconds when in the warning state. Also, the cache
free space size may be monitored at least once every two
seconds when in the critical state.

In some approaches, new write requests may be rejected on
private mount virtual drives when in the critical state. In more
approaches, new scratch mount requests received from the at
least one host may be failed when in the critical state. A
private mount is one in which a host issues a mount from a
private category, which usually means there is data on the
volume (e.g., the host may read or append to the volume after
a mount completion). A scratch mount is one in which the
host indicates to the controller that there is no active data on
the volume and that the host has the intention of writing data
to the volume after a mount completion.

In some more approaches, write requests received from the
at least one host may be throttled when in the critical state.
The throttling may include progressively reducing a rate at
which data received in the write requests is written to one or
more virtual drives such that no write requests are failed while
in the critical state. In some approaches, the throttling may
include calculating a write delay value associated with each
write request, the write delay value equaling 0.01%*((1
GB*N)-FS)/(1 MB) where N is a number of write requests
pending and FS is the cache free space.

Also, in some embodiments, the method 400 may include
exiting the critical state when the cache free space is greater
than the second threshold plus a first predetermined value that
is not zero. In addition, the method 400 may include exiting
the warning state when the cache free space is greater than the
first threshold plus a second predetermined value that is not
Zero.

In one embodiment, a computer program product for man-
aging cache space includes a computer readable storage
medium having computer readable program code embodied
therewith. The computer readable program code may be con-
figured to: send a first alert to at least one host when a cache
free space size is less than a first threshold and entering into a
warning state; send a second alert to the at least one host when
the cache free space size is less than a second threshold and
entering into a critical state; and throttle write requests
received from the at least one host when in the critical state by
progressively reducing a rate at which data received in the
write requests is written to one or more virtual drives such that
no write requests are failed while in the critical state.

Of course, the computer program product may further
include computer readable program code configured to:
monitor the cache free space size at least once every ten
seconds when in the warning state; and monitor the cache free
space size at least once every two seconds when in the critical
state.

In more approaches, the computer program product may
include computer readable program code configured to reject
new write requests on private mounted virtual drives when in

US 9,058,110 B2

15

the critical state. In some approaches, the computer program
product may include computer readable program code con-
figured to allow previously mounted virtual drives to continue
normal writing activity when in the critical state.

According to some additional embodiments, the computer
program product may include computer readable program
code configured to fail new scratch mount requests received
from the at least one host when in the critical state.

In one embodiment, the computer program product may
include computer readable program code configured to
throttle write requests further comprises computer readable
program code configured to calculate a write delay value
associated with each write request, the write delay value
equaling 0.01*((1 GB*N)-FS)/(1 MB) where N is a number
of write requests pending and FS is the cache free space.
Additionally, in some approaches, the computer program
product may include computer readable program code con-
figured to exit the critical state when the cache free space is
greater than the second threshold plus a first predetermined
value: and exit the warning state when the cache free space is
greater than the first threshold plus a second predetermined
value, where the predetermined values are not zero.

In another embodiment, a system includes a virtual tape
library having a cache, at least one virtual tape controller
coupled to the virtual tape library, and an interface for cou-
pling at least two hosts to the at least one virtual tape control-
ler. The cache is shared by the at least two hosts, and the at
least one virtual tape controller enters into a warning state and
provides a first alert to the at least one host when a cache free
space size is less than a first threshold, the at least one virtual
tape controller enters into a critical state and provides a sec-
ond alert to the at least one host when a cache free space size
is less than a second threshold, and the atleast one virtual tape
controller throttles write requests received from the at least
two hosts when in the critical state by progressively reducing
a rate at which data received in the write requests is stored to
one or more virtual drives in the virtual library such that no
write requests are failed while in the critical state.

Also, in some embodiments, the at least one virtual tape
controller may calculate a write delay value associated with
each write request received from the at least two hosts, the
write delay value equaling 0.01*((1 GB*N)-FS)/(1 MB)
where N is a number of write requests pending and FS is the
cache free space.

In more embodiments, the at least one virtual tape control-
ler may delete at least one scratch volume when in the critical
state, and the scratch volume may be chosen based on one or
more factors, such as a length of time the scratch volume has
been designated scratch, a priority level of the information
stored on the scratch volume, and a scratch delay value asso-
ciated with the scratch volume.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of a preferred embodiment should not be limited by any of the
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.

What is claimed is:

1. A system, comprising:

a virtual tape library having a cache;

at least one virtual tape controller coupled to the virtual
tape library; and

an interface for coupling at least two hosts to the at least one
virtual tape controller,

wherein the cache is shared by the at least two hosts, and

30

40

45

60

16

wherein a common view of a cache state, a virtual library
state, and a number of write requests pending is provided
to the at least two hosts by the virtual tape controller,

wherein the at least one virtual tape controller is configured
to monitor a cache free space size at least once every ten
seconds when in a warning state.

2. The system as recited in claim 1,

wherein the at least one virtual tape controller enters into

the warning state and provides a first alert to the at least
one host when the cache free space size is less than a first
threshold, and

wherein the at least one virtual tape controller enters into a

critical state and provides a second alert to the at least
one host when a cache free space size is less than a
second threshold.

3. The system as recited in claim 2, wherein the at least one
virtual tape controller throttles write requests received from
the at least one host when in the critical state by progressively
reducing a rate at which data received in the write requests is
stored to one or more virtual drives in the virtual library such
that no write requests are failed while in the critical state.

4. The system as recited in claim 3, wherein the at least one
virtual tape controller calculates a write delay value associ-
ated with each write request received from the at least one
host, the write delay value equaling 0.01*((1 GB*N)-FS)/(1
MB) where N is a number of write requests pending and FS is
the cache free space.

5. The system as recited in claim 1, wherein the at least one
virtual tape controller enters into a critical state and provides
an alert to the at least one host when a cache free space size is
less than a threshold, wherein the at least one virtual tape
controller allows previously mounted virtual drives to con-
tinue normal writing activity when in the critical state,
wherein at least one scratch volume is deleted when in the
critical state.

6. A method for managing cache space in a virtual tape
controller, the method comprising:

receiving data from at least one host using the virtual tape

controller;

storing data received from the at least one host to a cache

using the virtual tape controller;
sending a first alert to the at least one host when a cache free
space size is less than a first threshold and entering into
a warning state using the virtual tape controller;

sending a second alert to the at least one host when the
cache free space size is less than a second threshold and
entering into a critical state using the virtual tape con-
troller;
allowing previously mounted virtual drives to continue
normal writing activity when in the critical state; and

deleting at least one scratch volume when in the critical
state, the scratch volume chosen based on at least one of:
a length of time the scratch volume has been designated
scratch, a priority level of the information stored on the
scratch volume, and a scratch delay value associated
with the scratch volume.

7. The method as recited in claim 6, comprising monitoring
the cache free space size at least once every ten seconds when
in the warning state.

8. The method as recited in claim 6, comprising monitoring
the cache free space size at least once every two seconds when
in the critical state.

9. The method as recited in claim 6, comprising rejecting
new write requests on private mount virtual drives when in the
critical state.

US 9,058,110 B2

17

10. The method as recited in claim 6, comprising failing
new scratch mount requests received from the at least one host
when in the critical state.

11. The method as recited in claim 6, comprising throttling
write requests received from the at least one host when in the
critical state, wherein the throttling comprises progressively
reducing a rate at which data received in the write requests is
written to one or more virtual drives such that no write
requests are failed while in the critical state.

12. The method as recited in claim 11, wherein the throt-
tling further comprises calculating a write delay value asso-
ciated with each write request, the write delay value equaling
0.01*((1 GB*N)-FS)/(1 MB) where N is a number of write
requests pending and FS is the cache free space.

13. The method as recited in claim 6, comprising exiting
the critical state when the cache free space is greater than the
second threshold plus a first predetermined value.

14. The method as recited in claim 6, comprising exiting
the warning state when the cache free space is greater than the
first threshold plus a second predetermined value.

15. A computer program product for managing cache
space, the computer program product comprising a non-tran-
sitory computer readable storage medium having program
instructions embodied therewith, the program instructions
executable by a hardware controller to cause the controller to:

send, by the controller, a first alert to at least one host when

a cache free space size is less than a first threshold and
entering into a warning state;

send, by the controller, a second alert to the at least one host

when the cache free space size is less than a second
threshold and entering into a critical state; and

delete, by the controller, at least one scratch volume when

in the critical state, the scratch volume chosen based on

10

15

20

25

30

18

at least one of: a length of time the scratch volume has
been designated scratch, a priority level of the informa-
tion stored on the scratch volume, and a scratch delay
value associated with the scratch volume.

16. The computer program product as recited in claim 15,
comprising:

computer readable program code configured to monitor the

cache free space size at least once every ten seconds
when in the warning state; and

computer readable program code configured to monitor the

cache free space size at least once every two seconds
when in the critical state.

17. The computer program product as recited in claim 15,
comprising computer readable program code configured to
reject new write requests on private mounted virtual drives
when in the critical state.

18. The computer program product as recited in claim 15,
comprising computer readable program code configured to
allow previously mounted virtual drives to continue normal
writing activity when in the critical state.

19. The computer program product as recited in claim 15,
comprising computer readable program code configured to
fail new scratch mount requests received from the at least one
host when in the critical state.

20. The computer program product as recited in claim 15,
comprising computer readable program code configured to
throttle write requests received from the at least one host
when in the critical state by progressively reducing a rate at
which data received in the write requests is written to one or
more virtual drives such that no write requests are failed while
in the critical state.

